M1.B

M2.D

M3.(a) An electron pair on the ligand

Is donated from the ligand to the central metal ion
(b) Blue precipitate

Dissolves to give a dark blue solution
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4}^{+}$

$$
\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+4 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+2 \mathrm{OH}^{-}+2 \mathrm{H}_{2} \mathrm{O}
$$

(c) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+2 \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \longrightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+$ $4 \mathrm{NH}_{3}$
(d) $\mathrm{Cu}-\mathrm{N}$ bonds formed have similar enthalpy / energy to $\mathrm{Cu}-\mathrm{N}$ bonds broken

And the same number of bonds broken and made
(e) 3 particles form 5 particles / disorder increases because more particles are formed / entropy change is positive

Therefore, the free-energy change is negative

M4.D

M5.(a) Co-ordinate / dative / dative covalent / dative co-ordinate
Do not allow covalent alone
(b) (lone) pair of electrons on oxygen/O

If co-ordination to $\mathrm{O}^{2}, \mathrm{CE}=0$
forms co-ordinate bond with $\underline{\mathrm{Fe} / d}$ donates electron pair to $\underline{\mathrm{Fe}}$
'Pair of electrons on O donated to Fe/scores M1 and M2
(c) $180^{\circ} / 180 / 90$

Allow any angle between 85 and 95
Do not allow 120 or any other incorrect angle
(d) (i) $3: 5 / 5 \mathrm{FeC}_{2} \mathrm{O}_{4}$ reacts with $3 \mathrm{MnO}_{4}^{-}$

Can be equation showing correct ratio
(ii) M1 Moles of MnO_{4}^{-}per titration $=22.35 \times 0.0193 / 1000=\underline{4.31 \times 10^{-4}}$

Method marks for each of the next steps (no arithmetic error allowed for M2):
Allow 4.3×10^{-4} (2 sig figs)
Allow other ratios as follows:
eg from given ratio of $7 / 3$

M2 moles of $\mathrm{FeC}_{2} \mathrm{O}_{4}=$ ratio from (d)(i) used correctly $\times 4.31 \times 10^{-4}$ M2 $=7 / 3 \times 4.31 \times 10^{-4}=1.006 \times 10^{-3}$

M3 moles of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ in $250 \mathrm{~cm}^{3}=\mathrm{M} 2$ ans $\times 10$
M3 $=1.006 \times 10^{-3} \times 10=1.006 \times 10^{-2}$

M4 Mass of $\mathrm{FeC}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}=\mathrm{M} 3$ ans $\times 179.8$
$\boldsymbol{M 4}=1.006 \times 10^{-2} \times 179.8=1.81 \mathrm{~g}$

M5 \% of $\mathrm{FeC}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}=(\mathrm{M} 4 \mathrm{ans} / 1.381) \times 100$

$$
\text { M5 }=1.81 \times 100 / 1.381=131 \%(130 \text { to } 132)
$$

Moles of $\mathrm{FeC}_{2} \mathrm{O}_{4}=5 / 3 \times 4.31 \times 10^{-4}=7.19 \times 10^{-4}$
Moles of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ in $250 \mathrm{~cm}^{3}=7.19 \times 10^{-4} \times 10=7.19 \times 10^{-3}$
Mass of $\mathrm{FeC}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}=7.19 \times 10^{-3} \times 179.8=1.29 \mathrm{~g}$
$\%$ of $\mathrm{FeC}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}=1.29 \times 100 / 1.381=93.4$ (allow 92.4 to 94.4)
Note correct answer (92.4 to 94.4) scores 5 marks

Allow consequentially on candidate's ratio
eg $\boldsymbol{M} 2=5 / 2 \times 4.31 \times 10^{-4}=1.078 \times 10^{-3}$
M3 $=1.0078 \times 10^{-3} \times 10=1.078 \times 10^{-2}$
M4 $=1.078 \times 10^{-2} \times 179.8=1.94 \mathrm{~g}$
M5 $=1.94 \times 100 / 1.381=140 \%$ (139 to 141)
Other ratios give the following final \% values
$1: 1$ gives 56.1% (55.6 to 56.6)
5:1 gives 281\% (278 to 284)
5:4 gives 70.2% (69.2 to 71.2)

M6. (a) Same phase/state
(b) Because only exist in one oxidation state

Allow do not have variable oxidation states
(c) $2 \mathrm{I}^{-}+\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-} \rightarrow \mathrm{I}_{2}+2 \mathrm{SO}_{4}{ }^{2-}$

Ignore state symbols
Allow multiples
(d) Both (ions)have a negative charge

Or both have the same charge
Or (ions) repel each other
Do not allow both molecules have the same charge (contradiction)
(e) $2 \mathrm{Fe}^{2+}+\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-} \rightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{SO}_{4}{ }^{2-}$
$2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2}$
Equations can be in any order
Positive and negative (ions)/oppositely charged (ions)
Mark independently
(f) Equations 1 and 2 can occur in any order

Allow idea of Fe^{3+} converted to Fe^{2+} then Fe^{2+} converted back to Fe^{3+}
eg Fe (II) and Fe (III)
Any correctly identified pair
Allow two formulae showing complexes with different oxidation states even if oxidation state not given
(Characteristic) colour (of complexes)
eg Cu ${ }^{2+}(\mathrm{aq}) /\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is blue
Any correct ion with colour scores M3 and M4
Must show (aq) or ligands OR identified coloured compounde.g. CoCO_{3})
(b) Tetrahedral
$\left[\mathrm{CuCl}_{4}\right]^{2-} /\left[\mathrm{CoCl}_{4}\right]^{2-}$
Any correct complex
(Note charges must be correct)

Square planar
$\left(\mathrm{NH}_{3}\right)_{2} \mathrm{PtCl}_{2}$
Any correct complex

Linear
Do not allow linear planar
$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$
$\left[\mathrm{AgCl}_{2}\right]$ etc
1
(ii) 2 mol of reactants form 7 mol of products

Allow more moles/species of products
Allow consequential to (c)(i)

Therefore disorder increases

Entropy increases / +ve entropy change / free-energy change is negative
(iii) Moles EDTA $=6.25 \times 0.0532 / 1000=\left(3.325 \times 10^{-4}\right)$

```
Moles of Ca+ in 1 dm}\mp@subsup{}{}{3}=3.325\times1\mp@subsup{0}{}{-4}\times1000/150=(2.217\times10-3
Mark is for M1 > 1000 / 150 OR M1 × 74.1
    If ratio of Ca+ : EDTA is wrong or 1000 / 150 is wrong, CE
    and can score M1 only
    This applies to the alternative
```

Mass of $\mathrm{Ca}(\mathrm{OH})_{2}=2.217 \times 10^{-3} \times 74.1=0.164 \mathrm{~g}$
M1 $\times 74.1 \times 1000 / 150$
Answer expressed to 3 sig figs or better
Must give unit to score mark
Allow 0.164 to 0.165

M8.
(a) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{10}$
allow $[\mathrm{He}] 2 \mathrm{~s}^{2}$. or [Ne$] 3 \mathrm{~s}^{2}$.or $[\mathrm{Ar}] 3 \mathrm{~d}^{10}$
d sub-shell / shell / orbitals / sub-level full (or not partially full)
can only score M2 if d ${ }^{10}$ in M1 correct
allow 'full d orbital' if do in M1
do not allow d block
(b) atom or ion or transition metal bonded to / surrounded by one or more ligands

Allow Lewis base instead of ligand
by co-ordinate / dative (covalent) bonds / donation of an electron pair
can only score M2 if M1 correct
(c) H_{2} / hydrogen
do not allow H
no lone / spare / non-bonded pair of electrons only score M2 if M1 correct or give ' H ' in M1
(d) (i) +2 or $2+$ or Pd^{2+} or II or +II or II+ or two or two plus
(ii) tetrahedral
these shapes can be in any order
square planar
allow phonetic spelling e.g. tetrahydral

